
Intel Architecture Software Developer’s Manual 43-65

E

E 43

43.1 EMMS—Empty MMX™ State

Description 
Sets the values of all the tags in the FPU tag word to empty (all ones). This operation marks the 
MMX registers as available, so they can subsequently be used by floating-point instructions. (See 
“FPU Tag Word”, for the format of the FPU tag word.) All other MMX instructions (other than the 
EMMS instruction) set all the tags in FPU tag word to valid (all zeros).

The EMMS instruction must be used to clear the MMX state at the end of all MMX routines and 
before calling other procedures or subroutines that may execute floating-point instructions. If a 
floating-point instruction loads one of the registers in the FPU register stack before the FPU tag 
word has been reset by the EMMS instruction, a floating-point stack overflow can occur that will 
result in a floating-point exception or incorrect result.

Operation
FPUTagWord ← FFFFH;

Flags Affected
None.

Protected Mode Exceptions
#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Real-Address Mode Exceptions 
#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Virtual-8086 Mode Exceptions
#UD If EM in CR0 is set.

#NM If TS in CR0 is set.

#MF If there is a pending FPU exception.

Opcode Instruction Description

0F 77 EMMS Set the FP tag word to empty.



43-66 Intel Architecture Software Developer’s Manual

E

43.2 ENTER—Make Stack Frame for Procedure 
Parameters

Description
Creates a stack frame for a procedure. The first operand (size operand) specifies the size of the 
stack frame (that is, the number of bytes of dynamic storage allocated on the stack for the 
procedure). The second operand (nesting level operand) gives the lexical nesting level (0 to 31) of 
the procedure. The nesting level determines the number of stack frame pointers that are copied into 
the “display area” of the new stack frame from the preceding frame. Both of these operands are 
immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies the 
current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer. 

The ENTER and companion LEAVE instructions are provided to support block structured 
languages. The ENTER instruction (when used) is typically the first instruction in a procedure and 
is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at the end 
of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the 
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the 
ESP register with the current stack-pointer value minus the value in the size operand. For nesting 
levels of 1 or greater, the processor pushes additional frame pointers on the stack before adjusting 
the stack pointer. These additional frame pointers provide the called procedure with access points 
to other nested frames on the stack. See “Procedure Calls for Block-Structured Languages”, for 
more information about the actions of the ENTER instruction.

Operation
NestingLevel ← NestingLevel MOD 32
IF StackSize = 32

THEN 
Push(EBP) ;
FrameTemp ← ESP; 

ELSE (* StackSize = 16*)
Push(BP); 
FrameTemp ← SP; 

FI;
IF NestingLevel = 0

THEN GOTO CONTINUE;
FI;
IF (NestingLevel > 0) 

FOR i ← 1 TO (NestingLevel − 1)
DO 

IF OperandSize = 32
THEN

IF StackSize = 32
EBP ← EBP − 4;
Push([EBP]); (* doubleword push *)

ELSE (* StackSize = 16*)
BP ← BP − 4;
Push([BP]); (* doubleword push *)

FI;
ELSE (* OperandSize = 16 *)

IF StackSize = 32
THEN

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw 01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iw ib ENTER imm16,imm8 Create a nested stack frame for a procedure



Intel Architecture Software Developer’s Manual 43-67

E

EBP ← EBP − 2;
Push([EBP]); (* word push *)

ELSE (* StackSize = 16*)
BP ← BP − 2;
Push([BP]); (* word push *)

FI;
FI;

OD;
IF OperandSize = 32

THEN 
Push(FrameTemp); (* doubleword push *)

ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)

FI;
GOTO CONTINUE;

FI;
CONTINUE:
IF StackSize = 32 

THEN
EBP ← FrameTemp
ESP ← EBP − Size;

ELSE (* StackSize = 16*)
BP ← FrameTemp
SP ← BP − Size;

FI;
END;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

Virtual-8086 Mode Exceptions
#SS(0) If the new value of the SP or ESP register is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.



43-68 Intel Architecture Software Developer’s Manual

E


